68th Day Of Lockdown

Maharashtra65168280812197 Tamil Nadu2024611313157 Delhi173877846398 Gujarat1635692321007 Rajasthan83654855184 Madhya Pradesh78914444343 Uttar Pradesh77014651213 West Bengal48131775302 Andhra Pradesh3461228960 Bihar3359120915 Karnataka292299749 Telangana2499141277 Jammu and Kashmir234190828 Punjab2197194942 Odisha17239779 Haryana172194019 Kerala120957510 Assam9361044 Uttarakhand493794 Jharkhand4621914 Chhatisgarh4471021 Chandigarh2891994 Tripura2711720 Himachal Pradesh223634 Goa70420 Manipur6060 Puducherry57230 Nagaland3600 Meghalaya27121 Arunachal Pradesh310 Mizoram110 Sikkim100
Science 31 Mar 2020 MIT designing drug t ...

MIT designing drug that may block entry of coronavirus into human cells

Published Mar 31, 2020, 5:16 pm IST
Updated Mar 31, 2020, 5:16 pm IST
The potential drug is a short protein fragment, or peptide, that mimics a protein found on the surface of human cells, researchers said.
An artist's depiction of a virus being destroyed. (Photo | Pixabay - JPlenio)
 An artist's depiction of a virus being destroyed. (Photo | Pixabay - JPlenio)

Boston: MIT scientists have designed a drug candidate that they say may block coronaviruses' ability to enter human cells, an advance that could help develop a possible treatment for COVID-19.

The potential drug is a short protein fragment, or peptide, that mimics a protein found on the surface of human cells, the researchers said.


They have shown that their new peptide can bind to the viral protein that coronaviruses use to enter human cells, potentially disarming it, according to the findings published on bioRxiv, an online preprint server.

The researchers have sent samples of the peptide to collaborators who plan to carry out tests in human cells.

The team began working on this project in early March, after the Cryo-EM structure of the coronavirus spike protein, along with the human cell receptor that it binds to, was published by a research group in China.

Coronaviruses, including SARS-CoV-2, which is causing the current COVID-19 outbreak, have many protein spikes protruding from their viral envelope.

Studies of SARS-CoV-2 have also shown that a specific region of the spike protein, known as the receptor binding domain, binds to a receptor called angiotensin-converting enzyme 2 (ACE2).

This receptor is found on the surface of many human cells, including those in the lungs.

The ACE2 receptor is also the entry point used by the coronavirus that caused the 2002-03 SARS outbreak.

In hopes of developing drugs that could block viral entry, Genwei Zhang, a postdoctoral scholar at MIT, performed computational simulations of the interactions between the ACE2 receptor and the receptor binding domain of the coronavirus spike protein.

These simulations revealed the location where the receptor binding domain attaches to the ACE2 receptor -- a stretch of the ACE2 protein that forms a structure called an alpha helix.

The team then used peptide synthesis technology that their lab had previously developed, to rapidly generate a 23-amino acid peptide with the same sequence as the alpha helix of the ACE2 receptor.

Click on Deccan Chronicle Technology and Science for the latest news and reviews. Follow us on Facebook, Twitter