135th Day Of Lockdown

Maharashtra46826530552116476 Tamil Nadu2734602148154461 Andhra Pradesh1864611043541681 Karnataka151449746792804 Delhi1402321261164044 Uttar Pradesh104388605581857 West Bengal83800589621846 Telangana7095850814576 Gujarat65704485612529 Bihar6203140760349 Assam4816233429115 Rajasthan4667932832732 Haryana3779631226448 Odisha3768124483258 Madhya Pradesh3508225414912 Kerala279561629988 Jammu and Kashmir2239614856417 Punjab1901512491462 Jharkhand140705199129 Chhatisgarh10109761369 Uttarakhand8008484795 Goa7075511460 Tripura5520367528 Puducherry4147253758 Manipur301818147 Himachal Pradesh2879171013 Nagaland24056594 Arunachal Pradesh179011053 Chandigarh120671520 Meghalaya9173305 Sikkim7832971 Mizoram5022820

'Jumping genes' key to evolution, researchers reveal

ANI
Published Jul 30, 2018, 1:26 pm IST
Updated Jul 30, 2018, 1:26 pm IST
The mobilisation of these genes can also cause new mutations that lead to diseases, such as haemophilia and cancer.
'Jumping genes' key to evolution, researchers reveal. (Photo: Pixabay)
 'Jumping genes' key to evolution, researchers reveal. (Photo: Pixabay)

Washington: Turns out, almost half of our DNA sequences are made up of jumping genes, which are also known as transposons.

Transposons is a DNA sequence that changes its position within a genome, sometimes creating or reversing mutations and altering the cell's genetic identity and genome size. They jump around to develop sperm and egg cells.

 

According to researchers at Carnegie Institution for Science, the mobilization of these genes can also cause new mutations that lead to diseases, such as haemophilia and cancer. Remarkably little is known about when and where their movements occur in developing reproductive cells, the key process that ensures their propagation in future generations but can lead to genetic disorders for the hosts.

They developed new techniques to track the mobilisation of jumping genes. They found that during a particular period of egg development, a group of jumping-genes called retrotransposons hijacks special cells called nurse cells that nurture the developing eggs.

 

These jumping genes then use nurse cells to produce invasive material (copies of themselves called virus-like particles) that move into a nearby egg and then mobilize into the egg's DNA.

Animals unwittingly developed a powerful system to suppress jumping gene activity that uses small, non-coding RNAs called piRNAs, which recognize jumping genes and suppress their activity.

Occasionally, jumping genes manage to move, suggesting that they employ some special tactics to escape piRNA control. However, tracking the mobilization of jumping genes to understand their tactics has been a daunting task.

 

The researchers also developed approaches to track the movements of jumping genes using the fruit fly drosophila melanogaster. To facilitate their investigation, they disrupted piRNA suppression to increase the activity of these jumping genes and then monitored the movement of them during the egg-development process. This led to their discovery on the tactic that allows jumping genes to move.

"We were very surprised that these jumping genes barely moved in stem cells that produce developing egg cells, possibly because the stem cells would only have two copies of the genome for these jumping genes to use. Instead, these moving elements used the supporting nurse cells, which could provide up to thousands of copies of the genome per cell, as factories to massively manufacture virus-like particles capable of integration. Our research shows how parasitic genetic elements can time their activity and distinguish between different cell types to robustly propagate to drive evolutionary change and cause disease," explained co-author Zhao Zhang.

 

The findings appeared in the Journal of Cell.

...




ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT