142nd Day Of Lockdown

Maharashtra54831338184318650 Tamil Nadu3145202563135278 Andhra Pradesh2641421709242378 Karnataka1964941126333511 Delhi1494601343184167 Uttar Pradesh140775887862280 West Bengal98459671202059 Telangana8647563074665 Bihar8274154139450 Gujarat71064542382652 Assam5883842326145 Rajasthan5249738235789 Odisha4592731785321 Haryana4163534781483 Madhya Pradesh3902529020996 Kerala3811424922127 Jammu and Kashmir2489717003472 Punjab2390315319586 Jharkhand185168998177 Chhatisgarh12148880996 Uttarakhand96326134125 Goa871259575 Tripura6161417641 Puducherry5382320187 Manipur3752204411 Himachal Pradesh3371218114 Nagaland30119738 Arunachal Pradesh223115923 Chandigarh1595100425 Meghalaya11154986 Sikkim9105101 Mizoram6203230
Lifestyle Health and Wellbeing 25 Feb 2018 New study discovers ...

New study discovers enzyme that could treat celiac disease

ANI
Published Feb 25, 2018, 11:03 am IST
Updated Feb 25, 2018, 11:12 am IST
Celiac disease is an autoimmune disorder.
New study discovers enzyme that could treat celiac disease. (Photo: Pixabay)
 New study discovers enzyme that could treat celiac disease. (Photo: Pixabay)

Washington: A new enzyme has been discovered that can help treat celiac disease.

Researchers at the Stanford University have discovered how a disease-associated protein gets inactivated, opening the door to possible new treatments for the disease.

 

Celiac disease is an autoimmune disorder that affects by some estimates nearly 1 in 100 people. Celiac disease symptoms are triggered by gluten, a protein found in wheat and related plants, but gluten doesn't act alone to cause the digestive symptoms that patients suffer.

Rather, gluten induces an overactive immune response when it's modified by the enzyme transglutaminase 2, or TG2, in the small intestine. The new research identified the enzyme that turns off TG2, potentially paving the way for new treatments for celiac disease.

"Currently, therapies to treat people with celiac disease are lacking. The best approach right now is just a strict adherence to a lifelong gluten-free diet," said Michael Yi, the lead researcher. "Perhaps the reason behind this is our relatively poor understanding of TG2".

 

The biochemistry of how TG2 interacts with gluten and induces an immune response has been well studied, but more basic mysteries remain, for example how TG2 behaves in people without celiac disease.

Chaitan Khosla, who oversaw the new study, had conducted several studies showing that TG2 can be active or inactive, depending on the forming or breaking of a specific chemical bond, called a disulfide bond, between two amino acids in the enzyme.

"Even though there's a lot of TG2 protein in the small intestine, it's all inactive," Khosla said. "When it became clear that even though the protein was abundant, its activity was nonexistent in a healthy organ, the question became 'What turns the protein on, and then what turns the protein off?'"

 

In the new paper, the researchers performed experiments in cell cultures and found an enzyme that re-forms this bond, inactivating TG2.

This enzyme, ERp57, is mainly known for helping fold proteins inside the cell. When it turns off TG2, it does so outside of cells, raising more questions about its functions in healthy people.

"Nobody really understands how (Erp57) gets outside the cell," Khosla said. "The general thinking is that it's exported from the cell in small quantities; this particular observation suggests that it actually does have a biological role outside the cell."

 

TG2 is now also the first protein known to have a reversible disulfide bond on/off switch of this type. "This is a very different kind of on-and-off chemistry than the kind that medicinal chemists would (typically) use," Khosla said.

The results are published in the Journal of Biological Chemistry.

...




ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT