Mathematical method reveals structure in brain neural activity

This allows exploring structures of neurons without knowing their functions

Update: 2015-10-20 15:56 GMT
 
Washington: A newly-developed mathematical method can detect geometric structure in neural activity in the brain, scientists say. "Previously, in order to understand this structure, scientists needed to relate neural activity to some specific external stimulus," said Vladimir Itskov, associate professor of mathematics at Penn State University in US.
 
"Our method is the first to be able to reveal this 
structure without our knowing an external stimulus ahead of 
time. We've now shown that our new method will allow us to explore the organisational structure of neurons without knowing their function in advance," said Itskov. "The traditional methods used by researchers to analyse the relationship between the activities of neurons were adopted from physics," said Carina Curto, associate professor 
of mathematics at Penn State.
 
"But neuroscience data doesn't necessarily play by the same rules as data from physics, so we need new tools. Our method is a first step toward developing a new mathematical toolkit to uncover the structure of neural circuits with unknown function in the brain," Curto said. The method - clique topology - was developed by an interdisciplinary team of researchers at Penn State, the 
University of Pennsylvania, the Howard Hughes Medical Institute, and the University of Nebraska-Lincoln.
 
"We have adopted approaches from the field of algebraic topology that previously had been used primarily in the domain of pure mathematics and have applied them to experimental data on the activity of place cells - specialised neurons in the part of the brain called the hippocampus that sense the 
position of an animal in its environment," said Curto. The researchers measured the activity of place cells in the brains of rats during three different experimental conditions.
 
They then analysed the pairwise correlations of this activity - how the firing of each neuron was related to the firing of every other neuron. In the first condition, the rats were allowed to roam 
freely in their environment - a behaviour where the activity of place cells is directly related to the location of the
animal in its environment. They searched the data to find groups of neurons, or "cliques," in which the activity of all members of the clique was related to the activity of every other member.
 
Their analysis of these cliques, using methods from algebraic topology, showed an organised geometric structure. 
The researchers found similar structure in the activities among place cells in the other two conditions they tested, wheel-running and sleep, where place cells are not expected to have geometric organisation.
 
"Because the structure we detected was similar in all three experimental conditions, we think that we are picking up the fundamental organisation of place cells in the hippocampus," said Itskov. The research appears in the journal Proceedings of the National Academy of Sciences.

Similar News