Top

Cell's ‘biological clock’ may harbour cancer cure

This biological clock is defined by DNA structures known as telomeres

Washington: Scientists are targeting cell's 'biological clock' in order to find a way to get rid of cancer cells.

UT Southwestern Medical Center researchers found that a small molecule 6-thio-2'-deoxyguanosine could stop the growth of cancer cells in culture and decrease the growth of tumors in mice, and have targeted telomeres with 6-thiodG, which takes advantage of the cell's 'biological clock' to kill cancer cells and shrink tumour growth.

Dr. Jerry W. Shay, Professor and Vice Chairman of Cell Biology at UT Southwestern, said that they observed broad efficacy against a range of cancer cell lines with very low concentrations of 6-thiodG, as well as tumour burden shrinkage in mice.

6-thiodG acts by targeting a unique mechanism that is thought to regulate how long cells can stay alive, a type of aging clock. This biological clock is defined by DNA structures known as telomeres, which cap the ends of the cell's chromosomes to protect them from damage, and which become shorter every time the cell divides. Once telomeres have shortened to a critical length, the cell can no longer divide and dies though a process known as apoptosis.

Cancer cells are protected from this death by an RNA protein complex called telomerase, which ensures that telomeres do not shorten with every division. Telomerase has therefore been the subject of intense research as a target for cancer therapy. Drugs that successfully block its action have been developed, but these drugs have to be administered for long periods of time to successfully trigger cell death and shrink tumors, leading to considerable toxicities. This outcome is partially because cells in any one tumor have chromosomes with different telomere lengths and any one cell's telomeres must be critically shortened to induce death.

6-thiodG is preferentially used as a substrate by telomerase and disrupts the normal way cells maintain telomere length. Because 6-thiodG is not normally used in telomeres, the presence of the compound acts as an 'alarm' signal that is recognized by the cell as damage. As a result, the cell stops dividing and dies.

Telomerase is an almost universal oncology target, yet there are few telomerase-directed therapies in human clinical trials, researchers noted.

Importantly, unlike many other telomerase-inhibiting compounds, the researchers did not observe serious side effects in the blood, liver and kidneys of the mice that were treated with 6-thiodG.

Dr. Shay said that they believe this small molecule would address an unmet cancer need in an underexplored area that would be rapidly applicable to the clinic.

The paper is published in the journal Cancer Discovery.

( Source : ANI )
Next Story